This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Pharmacokinetics/Pharmacodynamics of Y-700, A Novel Xanthine Oxidase Inhibitor, in Rats and Man

I. Yamada^a; A. Fukunari^a; T. Osajima^a; M. Kamezawa^a; H. Mori^a; J. Iwane^a

^a Pharmaceuticals Research Division, Mitsubishi Pharma Corporation, Kisarazu-shi, Chiba, Japan

Online publication date: 27 October 2004

To cite this Article <code>Yamada</code>, <code>I.</code> , <code>Fukunari</code>, <code>A.</code> , <code>Osajima</code>, <code>T.</code> , <code>Kamezawa</code>, <code>M.</code> , <code>Mori</code>, <code>H.</code> and <code>Iwane</code>, <code>J.(2004)</code> <code>'Pharmacokinetics/Pharmacodynamics of Y-700, A Novel Xanthine Oxidase Inhibitor, in Rats and Man', <code>Nucleosides</code>, <code>Nucleotides</code> and <code>Nucleic</code> <code>Acids</code>, <code>23: 8, 1123 — 1125</code></code>

To link to this Article: DOI: 10.1081/NCN-200027384 URL: http://dx.doi.org/10.1081/NCN-200027384

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS Vol. 23, Nos. 8 & 9, pp. 1123–1125, 2004

Pharmacokinetics/Pharmacodynamics of Y-700, A Novel Xanthine Oxidase Inhibitor, in Rats and Man

I. Yamada,^{†,*} A. Fukunari,[†] T. Osajima, M. Kamezawa, H. Mori, and J. Iwane

Pharmaceuticals Research Division, Mitsubishi Pharma Corporation, Kisarazu-shi, Chiba, Japan

ABSTRACT

The pharmacokinetics and pharmacodynamics of a novel xanthine oxidase (XO) inhibitor, Y-700, were evaluated in rats and healthy male volunteers. In a rat model of hyperuricemia, oral Y-700 (0.3–10 mg/kg) showed a more potent and a longer-lasting hypouricemic action than allopurinol. A single oral dosing of Y-700 (5, 20 or 80 mg) to volunteers caused a dose-dependent reduction of serum uric acid levels indicating close relationship to plasma concentrations of the compound. In addition, Y-700 was hardly excreted in urine but mainly excreted in feces in rats and volunteers. These results suggested that Y-700 is a new effective inhibitor of XO in rats and humans with high oral bioavailability being predominantly eliminated via the liver unlikely to allopurinol.

Key Words: Gout; Hyperuricemia; Xanthine oxidase/dehydrogenase; Y-700.

1123

DOI: 10.1081/NCN-200027384 Copyright © 2004 by Marcel Dekker, Inc. 1525-7770 (Print); 1532-2335 (Online) www.dekker.com

[†]These authors equally contributed to this work.

^{*}Correspondence: I. Yamada, Pharmaceuticals Research Division, Mitsubishi Pharma Corporation, 1-1-1 Kazusakamatari, Kisarazu-shi, Chiba 292-0812, Japan.

1124 Yamada et al.

INTRODUCTION

Y-700, 1-(3-Cyano-4-neopentyloxyphenyl)pyrazole-4-carboxylic acid, has been introduced as a novel xanthine oxidase inhibitor, which bears no structural relationship to the known inhibitor, allopurinol.^[1] The present study was conducted to evaluate the pharmacokinetics and pharmacological actions of Y-700 in rats and healthy adult male volunteers.

MATERIALS AND METHODS

Male Sprague–Dawley rats were used for animal study. A rat model of hyperuricemia was established by repeated treatment of the animals with the uricase inhibitor, potassium oxonate following our previous report. ^[1] ¹⁴C—labeled Y-700 was used for the assessments of absorption, metabolism and excretion in rats. In a clinical study, a single dose (5, 20 or 80 mg) of Y-700 or placebo was administered orally to adult healthy male Japanese volunteers. Plasma and urinary concentrations of Y-700 and urinary amounts of xanthine and hypoxanthine were detected by a validated HPLC method.

RESULTS

Y-700 was absorbed rapidly in both species and was eliminated with t1/2 of 2.7–5.0 h for rats and 27.6–40.2 h for humans. In rats and humans, Cmax and AUC of oral Y-700 were increased dose-dependently (Table 1). Only Y-700 was detected in rats and humans plasma. Urinary excretions of Y-700 in rats and humans were 1.1% and 1.5%, respectively. In hyperuricemic rats, oral Y-700 (0.3–10 mg/kg) showed hypouricemic action in a dose-dependent manner, and was more potent and longer lasting than allopurinol. In humans, the action at doses of 20 and 80 mg were statistically significantly different from the placebo, indicating that maximal changes in serum UA levels (Emax) at doses 20 and 80 mg were –1.01 and –2.66 mg/dL, respectively. The hypouricemic action of Y-700 was maintained throughout the post dose. Urinary

Table 1. Pharmacokinetic and pharmacodynamic parameters of Y-700 after its single dosing in healthy male volunteers.

Dose	Placebo	5 mg	20 mg	80 mg
Cmax (µg/mL)	_	0.24 ± 0.04	0.92 ± 0.15	5.54 ± 1.20
AUC_{0-71h} (µg/h/mL)	_	5.5 ± 1.4	16.6 ± 1.9	106.3 ± 20.8
t1/2 (h)	_	40.2 ± 4.4	29.8 ± 1.6	27.6 ± 4.6
Emax (mg/dL)	0.25 ± 0.31	-0.44 ± 0.4	$-1.01 \pm 0.38*$	$-2.66 \pm 0.13**$

Mean \pm SD (n = 5-7).

^{*}p < 0.05.

^{**}p < 0.01 vs. placebo group (Dunnett's multiple comparison test).

excretion of xanthine and hypoxanthine were significantly increased after dosing of Y-700 compared with placebo group.

DISCUSSION

The present study demonstrated that Y-700 is a new effective XO inhibitor of nonrenal excretion type with a potent and a long-lasting hypouricemic action in rats and humans. The distinctive elimination route of Y-700 is expected to provide a beneficial property as a new drug for the treatment of gout and hyperuricemia. Unlike the case for allopurinol, it may not be necessary to adjust the dosage of Y-700 in patients according to their degree of renal function.

REFERENCE

Ishibuchi, S.; Morimoto, H.; Oe, T.; Ikebe, T.; Inoue, H.; Fukunari, A.; Kamezawa, M.; Yamada, I.; Naka, Y. Synthesis and structure-activity relationships of 1-phenylpyrazoles as xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett. 2001, 11, 879–882.